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Abstract

A motion of an individual ice field in the Arctic Ocean was monitored at the Russian
research station North Pole 35 established on the ice pack in 2008. The ice field ve-
locity (V ) was found to be correlated with wind velocity (v) in main features, such as
the positions of maxima and minima of V and v . However, the fine structure of the5

V -variation cannot be explained by the wind forcing only. There were periods of time
when the field drift was highly affected by either the tidal activity or the interactions of
ice sheets between each other. These data were put in comparison with the “waiting
times” statistics that is with the distributions of lengths of time intervals between subse-
quent important local accelerations of the ice field. These distributions were measured10

in several time windows differing in the average wind velocity and/or the mechanical
state of the ice pack. The distribution functions N(>τ) (N is the number of successive
events of accelerations separated by the time interval that exceeds τ) constructed in
different time windows demonstrated fractal or multifractal nature in the consolidated
ice pack but were truly random when the ice field drifted in the highly fragmented sea15

ice. The latter result evidences the existence of a relationship between the long-range
mechanical interactions in the pack and long-term memory (time scaling behavior) of
the sea ice motion.

1 Introduction

Recent studies of the sea ice drift and mechanical behavior of the ice pack, including its20

deformations and fragmentations, revealed that the Arctic sea ice cover (ASIC) exhibits
well-pronounced scaling properties typical for the dynamics of the non-equilibrium, per-
manently critical systems (Marsan et al., 2004; Korsnes et al., 2004; Smirnov et al.,
2006; Chmel et al., 2007; Rampal et al., 2008). The spatial, energy and temporal
distributions of the mechanical events in the ASIC follow the power law with varying25

exponents thus indicating the existence of a latent relationship between the scaling
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features and underlying physical processes.
The temporal invariance of the geophysical processes is highly debated in seismol-

ogy (Bak et al., 2002; Davidsen and Goltz, 2004; Varotsos et al., 2006; Telesca and
Lovallo, 2008), because the recurrence time between earthquakes is the key param-
eter of the problem of catastrophe forecasting. The studying of the correlated in time5

events that take place in the polar cap (where the areas of interacting components are
close to that in tectonic formations) allows one to establish some common trends in the
behavior of large-scale systems and to obtain new knowledge on the role of the time
correlation in geophysics.

There were reported previously (Chmel et al., 2005, 2007) some time characteristics10

of the sea ice drift in the Arctic Ocean as revealed from the field observations that
were carried out at the research station “North Pole 32” (NP 32) established on the
ice pack in 2003–2004. The sequences of events of accelerations of an individual ice
field were found to be self-similar (or, in terms of the critical dynamics, fractal) during
quasi-stationary periods of drift and fully disordered (truly random) when the great15

pack fragmentation occurred in the region of the NP 32 activity. The field investigation
of the sea ice drift dynamics was continued at the stations NP 33 and NP 35 where
the data on the sea ice mobility were collected during 2005 and 2008, respectively. In
this communication, we present the original data recorded at these stations and the
analysis of the ice field motion in different periods of time. A particular attention was20

paid for the response of the drift dynamics to varying outer conditions, such as the
wind forcing, tidal activity, and sea ice sheets interactions. The cases of monofractal,
multifractal and random time series are considered in the context of relative significance
of physical processes that govern the sea ice drift.

2 Experimental technique and data processing25

The permanent motion of the ice-pack consists of an infinite sequence of events of
displacements caused, mainly, by the wind forcing (Martin and Drucer, 1991) and, to
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lesser extent, by the ocean currents and tidals, which transform, at least partially, to the
direct force interactions between the sea ice cover components. The interactions of all
kinds cause the local accelerations of individual ice fields, that is, the sea ice sheets
limited by leads and cracks. In this work, the local accelerations were derived from
the data on the ice field displacements measured using GPS transducers that were5

established and actuated simultaneously on the same ice field at the distance of about
180 m. The data from two transducers were collected using a field PC in sampling
intervals of a minute. The observation accuracy when using the GPS transducers was
characterized by the twice distance root mean square (2DRMS) value. The 2DRMS
refers to a horizontal distance from the true position, on which 95% of measured points10

fall. The spatial anisotropy of the measurement errors and the symmetric shape of
the cloud of measured point are usually supposed in such estimate. However, the
latter assumption fails to be quite valid when carrying out the observations on the
drifting ice at high latitudes; therefore, an elliptic approximation was applied for the
analysis of spatial scattering of the measured points. One of the GPS transducers was15

conventionally referred as “master”, while the other one was referred as “slave”.
Figure 1 shows a cloud of scattering and the 2DRMS ellipse for positions of the

slave transducer measured in the orthogonal coordinates centered at the position of
the master transducer. The ellipse is constructed using the compatible function of the
two-dimensional probability distribution with taking into account a correlation of the20

orthogonal measurements. Two semiaxes of 6.2 m and 4.0 m characterize the 2DRMS
along the main directions.

In order to obtain estimates for the non-correlated measurement errors of the drift
velocity, as well as to assess their dependence of a sampling interval, the regression
analysis of the data from two GPS transducers was performed. The distances between25

sequent measurement points in the sampling interval were used as the input data of the
regression, and the standard error of the regression was taken as an estimate for the
drift velocity measurement error. Table 1 presents the obtained estimates for the stan-
dard error of regression, the non-correlated errors of the drift velocity measurements
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and the errors of the calculation rounding-off in different measurement intervals. The
estimates show a significant decrease of the non-correlated noises with the decrease
of the measurement interval, and this trend does not depend, in fact, on the drift ve-
locity (Fig. 2). One can suppose that this behavior is caused by the increase of the
stability of the navigational satellites configuration with reducing the measurement in-5

terval. In addition, the data in Table 1 indicate that the rounding-off errors dominate in
short measurement intervals.

Provided that the current geographical coordinates are known, the ice field velocity
(V ) and the absolute values of accelerations (A) can be calculated as

A ≡ |A| = |∆V |/∆t (1)10

Here ∆V is the variation of the drift rate measured in regular intervals ∆t=1 min. Only
the values V that exceed the standard error of velocity (Table 1) 5 times or more were
taken into account in the subsequent data analysis. The percentage of such velocities
(and, correspondingly, the percentage of reliable accelerations A>Acut-off) was about
50% of all measured values V . The time intervals between the events of acceleration15

whose amplitude exceeded Acut-off were regarded as waiting times for the nearest event
of acceleration. A collection of all waiting times was used to obtain the distribution
function N(>τ) (N is the number of successive events of accelerations separated by
the time interval that exceeds τ).

3 Results20

Figure 3a shows the ice field velocity measured in the period of time from 16 Febru-
ary 2008 to 15 March 2008. This time interval was selected for analysis because it
covers a few periods with quite different character of the ice motion.

A comparison of the V -variation with the data on the wind velocity (v) in the same
period of observations demonstrate a relationship between V and v in main features,25

such as the positions of maxima and minima (Fig. 3b). However, the fine structure
1599
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of the V -variation cannot be explained by the wind forcing only. One can distinguish,
at least, two periods of time when the field drift was affected by the action of another
source of forcing.

First, on 21–23 February 2008, the ice field exhibited quite excited motion, whose
actual variability was much stronger than the variability of the wind velocity in the same5

period of time. The wind-independent “jumps” seem to be due to the local interactions
between ice sheets, such as stick-slips and shearing. Second, on 11–16 March 2008, a
cyclic V -variation with a period equal to 12 h took place. This periodicity is undoubtedly
related with the tidal effect superimposed on the wind forcing. The motion of this kind
one could expect for the sea ice cover fragments, which are weakly connected with10

neighboring components. Hence, we suggested that an event of substantial sea ice
fragmentation occurred in the period of time preceded 10 March 2008. This supposition
was confirmed by studying the satellite images of the region of interest. The image of
10 March reveals the highly fragmented sea ice pattern of disconnected pieces instead
of the relatively consolidated pack seen in the image of 29 February (Fig. 4). Thus,15

one can divide the whole period of observations into a few conventionally separated
time windows characterized by particular drift conditions, that is window (A) from 16
to 20 February (“stationary” wind-driven drift); (B) 21 to 23 February (highly excited
movement); (C) 24 February to 6 March (wind-driven drift); (D) 7 to 10 March (a cycle
of the sea ice cover fragmentation); (E) 11 to 15 March (tidal-driven drift). In order20

to estimate the response of the ice field motion on the varying conditions of drift, the
sequences of ice field accelerations were calculated for each time window.

To construct the distribution function N(>τ) graphically, the number of waiting times
exceeding an arbitrary given τ was plotted against τ in doubly logarithmic coordinates.

The obtained waiting time distributions for selected time windows are depicted in25

Fig. 5. The distributions are unambiguously different. In windows A–D the Nversus τ
dependence exhibits a power law

N(> τ) ∝ τδ (2)
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The dependences in windows A, B and D demonstrate the mono-exponent behavior,
while there is a dual exponent dependence in window C. The function N(>τ) does not
follow the power law in window E.

4 Discussion

The power law decay of time correlations between physical events over wide time scale5

are typical for fractal the behavior inherent in permanently critical systems, that is in the
systems where correlations are much larger than the length scale of direct interacting.

The absolute value of the power exponent characterizes the relative contribution of
“short” and “long” waiting times to the whole N(>τ) distribution. Really, one can see
that the largest absolute value of δ=−3.4 was obtained for window B (Fig. 3a) that10

is during the highly excited motion characterized by predominantly short recurrence
times. Two different exponents equal to 1.0 and 1.3 characterize the ice field motion in
window B. This means that the waiting time distribution is multifractal, that is the ice field
is involved into two critical processes of different time scale levels. Since the temporal
characteristics of the permanently critical systems are interrelated with their spatial15

properties (Maslov et al., 1994; Rampal et al., 2008), one can suggest that the time
multifractality is caused by the fact that the detected accelerations were corresponded
with the simultaneous motion of the sea ice formations belonging to different hierarchy
levels, say, local and regional ones in terms of the Overland’s classification (Overland
et al., 1995).20

The waiting time distribution measured in window E does not exhibit a log-linear
dependence. In the light of the data presented in this work, we conclude that the
loss of the temporal correlation occurred after the beginning of the fragmentation as a
result of the multiple breakage of structural links in the fracturing sea ice sheets. In the
current study, the prevailing tidal forcing in the period of time 11 to 15 March (window E)25

signalizes the low interactions of the ice field with neighboring sea ice structures. The
lack of long-range interactions excludes the possibility of long-term time correlations

1601

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-print.pdf
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
6, 1595–1610, 2009

Variability of scaling
time series in sea ice

drift dynamics in
Arctic Ocean

A. Chmel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

since the structural memory of preceding events in a multi-component system is, in
fact, a cooperative response of the system as a whole on the behavior of its individual
components. In our case, an ice field itself does not store the information about its
prehistory, while its environment does. The highly variable contact interactions (stick-
slips, impact, etc.) play the role of dynamical structural links in the mobile collection of5

sea ice pieces.
The effect of the mechanical connectedness of the non-equilibrium statistical system

on its scaling properties was considered of a number of model simulations (Christensen
and Olami, 1992; Olami et al.,1992; Abaimov et al., 2007). A scenario close to our
situation was analyzed by Abaimov et al. (2007) using a slider-block model for slip10

events. The authors obtained that the scale-invariant statistics of the recurrence times
depends on the system’s stiffness: the lower the stiffness (and, hence, the energy
conservation), the smaller size of elements that interact following the power law waiting
time statistics. In a highly stiff system the power law waiting time statistics covers the
events of all spatial scale levels. The qualitative conclusion of this simulation – the lower15

conservative properties of the system, the lesser pronounced its time scale invariant
behavior – is consistent with the loss of the time scaling during the as-free drift of the
ice field observed in our study.

5 Conclusions

The length distributions of time intervals between subsequent important (as defined)20

local accelerations of an ice field drifting in the consolidated pack demonstrate the
power law behavior. The values of the power law exponent are sensitive to the intensity
of the wind forcing because the contribution of “short” and “long” time intervals to the
waiting time distribution depends on the variability of the ice field velocity. However, in
the highly fragmented sea ice, the waiting-time statistics becomes non-scaling because25

the memory on the space-time trajectory of the low-connected, low-interacting system
cannot be efficiently maintained.

1602

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-print.pdf
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
6, 1595–1610, 2009

Variability of scaling
time series in sea ice

drift dynamics in
Arctic Ocean

A. Chmel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

References

Abaimov, S. G., Turcotte, D. L., Sherbakov, R., and Rundle, J. B.: Recurrence and interoc-
curence behavior of self-organized complex phenomena, Nonlinear Proc. Geoph., 14, 455–
464, 2007.

Bak, P., Christensen, K., Danon, L., and Scalon, T.: Unified scaling law for Earthquakes, Phys.5

Rev. Lett., 88, 178501(1–4), 2002.
Chmel, A., Smirnov, V. N., and Astakhov, A. P.: The Arctic sea ice cover: fractal space-time

domain, Physica A, 357, 556–564, 2005.
Chmel, A., Smirnov, V. N., and Panov, L. V.: Scaling aspects of the sea ice-drift dynamics and

pack fracture, Ocean Sci., 3, 291–298, 2007,10

http://www.ocean-sci.net/3/291/2007/.
Christensen, K. and Olami, Z.: Scaling, phase transitions, and nonuniversality in a self-

organized critical cellular-automation model, Phys. Rev. A, 46, 1829–1838, 1992.
Davidsen, J. and Goltz, C.: Are seismic waiting time distributions universal?, Geophys. Res.

Lett., 31, L21612–L21616, 2004.15

Korsnes, R., Souza, S. R., Donangelo, R., Hansen, A., Paczuski, M., and Sneppen, K.: Scaling
in fracture and refreezing of sea ice, Physica A, 331, 291–296, 2004.

Marsan, D., Stern, H., Lindsay, R., and Weiss, J.: Scale dependence and localization of the
deformation of Arctic Sea ice, Phys. Rev. Lett., 93, 178501(1–4), 2004.

Martin, S. and Drucer, R.: Observation of short-period ice floe accelerations during leg II of the20

Polarbjorn drift, J. Geophys. Res., 96, 10567–10580, 1991.
Maslov, S., Paczuski, M., and Bak, P.: Avalanches and 1/f noise in evolution and growth models,

Phys. Rev. Lett., 73, 2162–2165, 1994.
Olami, Z., Feder, H. J. S., and Christensen, K.: Self-organized criticality in a continuous, non-

conservative cellular automaton modeling earthquakes, Phys. Rev. Lett., 68, 1244–1247,25

1992.
Overland, J. E., Walter, B. A. Curtin, T. B., and Turet, P.: Hierarchy and sea ice mechanics: a

case study from the Beaufort Sea, J. Geophys. Res., 100, 4559–4571, 1995.
Rampal, P., Weiss, J., Marsan, D., Lindsay, R., and Stern, H.: Scaling properties of sea ice

deformation from buoy dispersion analysis, J. Geophys. Res., 113, C03002(1-12), 2008.30

Sheikin I. B. and Smirnov, V. N.: Accuracy estimation of the GPS measurements at the Russian
drifting stations North Pole-33 and North Pole-35, Proc. 19th IAHR International Symposium

1603

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-print.pdf
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.ocean-sci.net/3/291/2007/


OSD
6, 1595–1610, 2009

Variability of scaling
time series in sea ice

drift dynamics in
Arctic Ocean

A. Chmel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

on Ice, Vancouver, Canada, July, 2008.
Smirnov, V. N., Chmel, A. E., Panov, L. V., and Tulaikova T. V.: Ice of the Arctic: the processes of

self-organized dynamics and mechanics, Stockholm Intern. Fairs, Abstract 6360–24, 2006.
Telesca, L. and Lovallo, M.: Investigating non-uniform scaling behaviour in temporal fluctuations

of seismicity, Nat. Hazards Earth Syst. Sci., 8, 973–976, 2008,5

http://www.nat-hazards-earth-syst-sci.net/8/973/2008/.
Vorotsos, P. A., Sarlis, N. V., Skordas, E. S., Tanaka, H. K., and Lazaridou, M. S.:Attempt to

distinguish long-range temporal correlations from the statistics of the increments by natural
time analysis, Phys. Rev. Lett., 74, 021123(1–12), 2006.

1604

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-print.pdf
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.nat-hazards-earth-syst-sci.net/8/973/2008/


OSD
6, 1595–1610, 2009

Variability of scaling
time series in sea ice

drift dynamics in
Arctic Ocean

A. Chmel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 1. Sampling interval influence on the empirical error estimates*.

Sampling interval, min 1 2 5 10

Standard error of regression, m 0.8 1.14 1.62 1.91
Standard error of velocity, m/sec 0.013 0.009 0.005 0.003
Rounding error m/sec 0.031 0.015 0.006 0.003

∗ For more detailed accuracy analysis of this experiment see (Sheikin and Smirnov, 2008).

1605

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-print.pdf
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
6, 1595–1610, 2009

Variability of scaling
time series in sea ice

drift dynamics in
Arctic Ocean

A. Chmel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

 9

 
 
Fig. 1 

9 

Fig. 1. 24-h scattergram of the slave transducer data presented in the local orthogonal coordi-
nates. The ellipse (a) shows the 2DRMS (95% concentration) for the compatible function; (b,
c): the frequency histograms of the partial pseudo distance distributions with normal approxi-
mations and partial standard deviations.
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 10

 
 
Fig. 2 

10 

Fig. 2. Standard error estimates of the drift velocity.

1607

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-print.pdf
http://www.ocean-sci-discuss.net/6/1595/2009/osd-6-1595-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
6, 1595–1610, 2009

Variability of scaling
time series in sea ice

drift dynamics in
Arctic Ocean

A. Chmel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

 11

 
 
Fig. 3 

11 

Fig. 3. Wind velocity (a) and ice field velocity (b) in the period of time from 16 February to
15 March 2008.
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 12

 
 
Fig. 4 

12 

Fig. 4. Fragments of the AVHRR images of the region of NP 35 drift obtained on 29 February
(a) and 10 March 2008 (b).
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 13

+ 
 
Fig. 5 

13 

Fig. 5. The waiting time distributions N(>τ) in different time windows in February (a) and in
March 2008 (b).
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